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Powerful generic framework for algorithm design/nonconvex optimization

Proof Algorithm

Inefficient algorithms

(polynomial system)

Efficient algorithms

(relaxation + rounding)

Yields the most powerful approximation algorithms for many statistical/ML problems

• Max-cut, tensor decomposition, dictionary learning, matrix/tensor completion, sparse PCA, 
Gaussian mixture models, planted clique, robust statistics, quantum separability, …



Quantum separability

October 1, 2025 2

What is quantum entanglement?


Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.





Quantum separability
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What is quantum entanglement?

ℋ𝐴𝐴 ℋ𝐵𝐵⊗Hilbert space:



Quantum separability

October 1, 2025 4

ℋ𝐴𝐴 ⊗ℋ𝐵𝐵 ≠ 𝜙𝜙 𝐴𝐴 ⊗ 𝜓𝜓 𝐵𝐵  ∶ 𝜙𝜙 ∈ ℋ𝐴𝐴, 𝜓𝜓 ∈ ℋ𝐵𝐵



Quantum separability

October 1, 2025 5

ℋ𝐴𝐴 ⊗ℋ𝐵𝐵 = �
𝑖𝑖

𝑐𝑐𝑖𝑖 𝜙𝜙𝑖𝑖 𝐴𝐴 ⊗ 𝜓𝜓𝑖𝑖 𝐵𝐵  ∶ 𝜙𝜙𝑖𝑖 ∈ ℋ𝐴𝐴, 𝜓𝜓𝑖𝑖 ∈ ℋ𝐵𝐵 , 𝑐𝑐𝑖𝑖 ∈ ℂ

• (Pure) separable state:
Ψ = 𝜙𝜙 𝐴𝐴 ⊗ 𝜓𝜓 𝐵𝐵

E.g. 01 = 0 ⊗ 1

• (Pure) entangled state:
Ψ ≠ 𝜙𝜙 𝐴𝐴 ⊗ 𝜓𝜓 𝐵𝐵 ∀ 𝜙𝜙 ∈ ℋ𝐴𝐴, 𝜓𝜓 ∈ ℋ𝐵𝐵

E.g. 1
2

00 + 11  (Bell state)



Quantum separability
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Sometimes we don’t have a complete knowledge of the quantum system

• Mixed state: probabilistic mixtures of pure states, e.g. Pr 𝜌𝜌 = 0 ] = 1
2
, Pr 𝜌𝜌 = 1 ] = 1

2

• Represented by the density matrix 𝜌𝜌 ∈ 𝐵𝐵 ℋ :
𝜌𝜌 ≽ 0 and tr 𝜌𝜌 = 1

e.g. 

1
2

1 0
0 1 =

1
2

0 0 +
1
2

1 1

• Mixed separable state:

𝜌𝜌𝐴𝐴𝐴𝐴 = �
𝑖𝑖

𝑝𝑝𝑖𝑖𝜎𝜎𝑖𝑖𝐴𝐴 ⊗ 𝜏𝜏𝑖𝑖𝐵𝐵 = �
𝑖𝑖

𝑞𝑞𝑖𝑖 𝜙𝜙𝑖𝑖 𝐴𝐴 𝜙𝜙𝑖𝑖 ⊗ 𝜓𝜓𝑖𝑖 𝐵𝐵 𝜓𝜓𝑖𝑖

• Mixed entangled state: any 𝜌𝜌𝐴𝐴𝐴𝐴 not separable



Quantum separability
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• The Werner state (2-qubit):
𝜌𝜌𝑊𝑊 𝑝𝑝 = 𝑝𝑝 Ψ− Ψ− + 1 − 𝑝𝑝 𝐼𝐼4

where Ψ− = 1
2

01 − 10

• 𝑝𝑝 = 1: pure entangled state

• ⁄1 3 < 𝑝𝑝 < 1: mixed entangled state

• 0 < 𝑝𝑝 ≤ ⁄1 3: mixed separable state

• 𝑝𝑝 = 0: maximally mixed state (noise)

Quantum separability: given the full description of a density matrix 𝜌𝜌𝐴𝐴𝐴𝐴 ∈ ℂ𝑛𝑛
2×𝑛𝑛2 , decide 

whether 𝜌𝜌𝐴𝐴𝐴𝐴 is entangled or separable



Quantum separability
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Quantum separability: given a density matrix 𝜌𝜌𝐴𝐴𝐴𝐴 ∈ ℂ𝑛𝑛
2×𝑛𝑛2 , decide:

• YES: 𝜌𝜌𝐴𝐴𝐴𝐴 is separable; or

• NO: 𝜌𝜌𝐴𝐴𝐴𝐴 is 𝜖𝜖-far from the set of separable states

i.e. the weak membership problem for the set of separable states

𝜓𝜓

I built a 
QC!Is 𝜓𝜓  entangled?



Entanglement witness and the best separable state (BSS)
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Entanglement witness for an entangled state 𝜌𝜌 is a measurement ℳ such that 

1.  ℳ accepts 𝜌𝜌 with probability 1;

2.  For any separable state 𝜌𝜌′, ℳ accepts 𝜌𝜌′ with probability at most 1 − 𝜖𝜖

Quantum measurement

• ℳ ∈ ℂ𝑛𝑛2×𝑛𝑛2 is Hermitian and 0 ≼ℳ ≼ 𝐼𝐼

• The probability that ℳ accepts 𝜌𝜌 is tr ℳ𝜌𝜌

Best separable state problem (𝐵𝐵𝐵𝐵𝑆𝑆1,𝑠𝑠): given an 𝑛𝑛2-by-𝑛𝑛2 measurement ℳ, distinguish:

• YES: there is a separable state 𝜌𝜌 such that tr ℳ𝜌𝜌 = 1

• NO: for any separable state 𝜌𝜌, tr ℳ𝜌𝜌 ≤ 𝑠𝑠



History and motivations of BSS
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Best separable state problem (𝐵𝐵𝐵𝐵𝑆𝑆𝑐𝑐,𝑠𝑠): given an 𝑛𝑛2-by-𝑛𝑛2 measurement ℳ and 0 ≤ 𝑠𝑠 < 𝑐𝑐 ≤ 1, 
distinguish the following two cases:

• YES: there is a separable state 𝜌𝜌 such that tr ℳ𝜌𝜌 ≥ 𝑐𝑐

• NO: for any separable state 𝜌𝜌, tr ℳ𝜌𝜌 ≤ 𝑠𝑠

• Brute-force: 2𝒪𝒪 𝑛𝑛 -time

• Blier-Tapp ’09, Gurvits ’03: 𝐵𝐵𝐵𝐵𝑆𝑆𝑐𝑐,𝑠𝑠 is NP-hard for any 𝑐𝑐 − 𝑠𝑠 ≥ ⁄1 poly 𝑛𝑛

• Harrow-Montanaro ’13: no 𝑛𝑛𝑜𝑜(log 𝑛𝑛)-time algorithm for 𝐵𝐵𝐵𝐵𝑆𝑆1,0.5 assuming ETH

• Quantum complexity implication: if there is a quasi-polynomial time algorithm for 𝐵𝐵𝐵𝐵𝑆𝑆0.99,0.5, then 
𝐐𝐐𝐐𝐐𝐐𝐐 2 ⊂ 𝐄𝐄𝐄𝐄𝐄𝐄

• Brandão et al. ’11, Brandão-Harrow ’15: quasi-poly algorithm for special family of measurements



Main result
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Theorem (Barak-Kothari-Steurer ’17).

For every 𝑠𝑠 < 1, there is a 2 �𝒪𝒪 𝑛𝑛 -time algorithm for 𝐵𝐵𝐵𝐵𝑆𝑆1,𝑠𝑠, based on rounding an SoS 
relaxation



Classical version of BSS
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Find a rank-1 matrix in a subspace: 

• Input: the basis of a subspace 𝒲𝒲 ⊂ ℝ𝑛𝑛×𝑛𝑛 of 𝑛𝑛 × 𝑛𝑛 matrices

• Promise: 𝑢𝑢𝑣𝑣⊤ ∈ 𝒲𝒲 for 𝑢𝑢, 𝑣𝑣 ∈ 𝕊𝕊𝑛𝑛−1

• Goal: find 𝑥𝑥,𝑦𝑦 ∈ 𝕊𝕊𝑛𝑛−1 such that dist 𝑥𝑥𝑦𝑦⊤,𝒲𝒲 < 0.01 

rank-1

𝒲𝒲



Classical version of BSS
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Find a rank-1 matrix in a subspace: 

• Input: the basis of a subspace 𝒲𝒲 ⊂ ℝ𝑛𝑛×𝑛𝑛 of 𝑛𝑛 × 𝑛𝑛 matrices

• Promise: 𝑢𝑢𝑢𝑢⊤ ∈ 𝒲𝒲 for 𝑢𝑢 ∈ 𝕊𝕊𝑛𝑛−1

• Goal: find 𝑥𝑥 ∈ 𝕊𝕊𝑛𝑛−1 such that dist 𝑥𝑥𝑥𝑥⊤,𝒲𝒲 < 0.01 

rank-1

𝒲𝒲

Only “symmetric” version for simplicity



Polynomial optimization formulation
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Find a rank-1 matrix in a subspace: 

• Input: Π ∈ ℝ𝑛𝑛2×𝑛𝑛2 the orthogonal projector for the subspace 𝒲𝒲

• Promise: Π 𝑢𝑢 ⊗ 𝑢𝑢 = 𝑢𝑢 ⊗ 𝑢𝑢 for 𝑢𝑢 ∈ 𝕊𝕊𝑛𝑛−1

• Goal: find 𝑥𝑥 ∈ 𝕊𝕊𝑛𝑛−1 such that Π 𝑥𝑥 ⊗ 𝑥𝑥 𝐹𝐹
2 > 0.99

Degree-4 polynomial optimization:

max
𝑥𝑥1,…𝑥𝑥𝑛𝑛∈ℝ

 𝑃𝑃 𝑥𝑥 ≔ 𝑥𝑥 ⊗ 𝑥𝑥 ⊤Π 𝑥𝑥 ⊗ 𝑥𝑥

s. t.  𝑥𝑥12 + ⋯𝑥𝑥𝑛𝑛2 = 1



Approximation algorithm = Relaxation + Rounding
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General paradigm in approximation algorithm design

• Choose a convex relaxation

• Solve a convex program

• Round to a feasible solution

Is there a rank-1 matrix 
in 𝒲𝒲?

Is the polynomial 
system feasible?

Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥
𝑥𝑥 2 = 1



Blueprint

October 1, 2025 16

1. Choose the “tightest” convex relaxation

→ Feasible points = distributions over solutions

2. Show how to round any solution

3. Dive in to find the constraints actually used

4. Relax to a convex program by including only useful constraints

Is there a rank-1 matrix 
in 𝒲𝒲?

Is the polynomial 
system feasible?

Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥
𝑥𝑥 2 = 1



Solutions as distributions
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Polynomial formulation:     (1) Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥    (2) 𝑥𝑥 2 = 1

Let 𝜇𝜇 be a probability distribution over 𝑥𝑥 satisfying (1) and (2)

Consider 𝔼𝔼𝜇𝜇 and any polynomial 𝑞𝑞 𝑥𝑥 :

• Positivity: 𝔼𝔼𝜇𝜇 𝑞𝑞 ≥ 0 whenever 𝑞𝑞 𝑥𝑥 ≥ 0 ∀ 𝑥𝑥

• Normalization: 𝔼𝔼𝜇𝜇 1 = 1

• Constraints satisfiability: 𝔼𝔼𝜇𝜇 Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝔼𝔼𝜇𝜇 𝑥𝑥 ⊗ 𝑥𝑥     and    𝔼𝔼𝜇𝜇 𝑥𝑥 2 = 1



Solutions as distributions
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Polynomial formulation:     (1) Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥    (2) 𝑥𝑥 2 = 1

Let 𝜇𝜇 be a probability distribution over 𝑥𝑥 satisfying (1) and (2)

Consider 𝔼𝔼𝜇𝜇 and any polynomial 𝑞𝑞 𝑥𝑥 :

• Positivity: 𝔼𝔼𝜇𝜇 𝑞𝑞 ≥ 0 whenever 𝑞𝑞 𝑥𝑥 ≥ 0 ∀ 𝑥𝑥

• Normalization: 𝔼𝔼𝜇𝜇 1 = 1

• Constraints satisfiability: 𝔼𝔼𝜇𝜇 𝑞𝑞 ⋅ Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝔼𝔼𝜇𝜇 𝑞𝑞 ⋅ 𝑥𝑥 ⊗ 𝑥𝑥     and    𝔼𝔼𝜇𝜇 𝑞𝑞 ⋅ 𝑥𝑥 2 = 𝔼𝔼𝜇𝜇[𝑞𝑞]

𝜇𝜇 requires exponentially many parameters to describe

• Only use degree-𝑑𝑑 moments of 𝜇𝜇: 

𝔼𝔼𝜇𝜇 𝑥𝑥𝑆𝑆  𝑆𝑆 ⊂ 𝑛𝑛 , 𝑆𝑆 ≤ 𝑑𝑑



Rounding low-degree moments
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Polynomial formulation:     (1) Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥    (2) 𝑥𝑥 2 = 1

Rounding: Given degree-𝑑𝑑 moments of 𝜇𝜇 satisfying (1) and (2) 𝔼𝔼𝜇𝜇 𝑥𝑥𝑆𝑆  𝑆𝑆 ⊂ 𝑛𝑛 , 𝑆𝑆 ≤ 𝑑𝑑 , find an 
approximation solution 𝑥𝑥⋆ ∈ 𝕊𝕊𝑛𝑛−1 such that Π 𝑥𝑥⋆ ⊗ 𝑥𝑥⋆ ≥ 0.99

Thought experiment:

• Say, 𝜇𝜇 is uniform over 𝑢𝑢1, … ,𝑢𝑢𝑁𝑁 ∈ 𝕊𝕊𝑛𝑛−1 such that Π 𝑢𝑢𝑖𝑖 ⊗ 𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑖𝑖 ⊗ 𝑢𝑢𝑖𝑖

• Say, the set of rank-1 matrices were convex

• By linearity, 

𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ =
1
𝑁𝑁
�
𝑖𝑖

𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖⊤ ∈ 𝒲𝒲 Done!



Approximate “convexity”
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Polynomial formulation:     (1) Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥    (2) 𝑥𝑥 2 = 1

Rounding: Given degree-𝑑𝑑 moments of 𝜇𝜇 satisfying (1) and (2) 𝔼𝔼𝜇𝜇 𝑥𝑥𝑆𝑆  𝑆𝑆 ⊂ 𝑛𝑛 , 𝑆𝑆 ≤ 𝑑𝑑 , find an 
approximation solution 𝑥𝑥⋆ ∈ 𝕊𝕊𝑛𝑛−1 such that Π 𝑥𝑥⋆ ⊗ 𝑥𝑥⋆ ≥ 0.99

Lemma (Approximately rank-1 suffices). Suppose that 

𝜆𝜆max 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ ≥ 0.99 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹

Then the top eigenvector 𝑦𝑦 of 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤  satisfies Π 𝑦𝑦⊗ 𝑦𝑦 ≥ 0.9

Proof.

• 𝜆𝜆𝜆𝜆𝑦𝑦⊤ − 𝔼𝔼 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹
2 = 𝔼𝔼 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹

2 − 𝜆𝜆2 ≤ 0.01 ⋅ 𝜆𝜆2

• Π 𝑦𝑦⊗ 𝑦𝑦 ≥ ⁄Π𝔼𝔼 𝑥𝑥 ⊗ 𝑥𝑥 𝜆𝜆 − 0.1 = ⁄𝔼𝔼 Π 𝑥𝑥 ⊗ 𝑥𝑥 𝜆𝜆 − 0.1 = ⁄𝔼𝔼 𝑥𝑥 ⊗ 𝑥𝑥 𝜆𝜆 − 0.1 ≥ 0.9

∎



Blueprint
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1.

→

2. Show how to round any solution

→ “Bulk” of the proof

3. Dive in to find the constraints actually used

4. Relax to a convex program by including only useful constraints

Is there a rank-1 matrix 
in 𝒲𝒲?

Is the polynomial 
system feasible?

Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥
𝑥𝑥 2 = 1



Rounding via conditioning
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Polynomial formulation:     (1) Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥    (2) 𝑥𝑥 2 = 1

Rounding:

𝜆𝜆max 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ ≥ 0.99 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹

Thought experiment 2:

• Say, 𝜇𝜇 is uniform over 𝕊𝕊𝑛𝑛−1

• 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ = 1
𝑛𝑛
𝐼𝐼, i.e. not rank-1



Rounding via conditioning
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Polynomial formulation:     (1) Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥    (2) 𝑥𝑥 2 = 1

Rounding:

𝜆𝜆max 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ ≥ 0.99 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹

Thought experiment 2:

• Say, 𝜇𝜇 is uniform over 𝕊𝕊𝑛𝑛−1

• 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝑥𝑥1 ≥ 𝑡𝑡 ≈ diag 𝑡𝑡2, 1−𝑡𝑡
2

𝑛𝑛−1
, … , 1−𝑡𝑡

2

𝑛𝑛−1

• Define 𝜇𝜇𝜇 to be the 𝜇𝜇 conditioned on 𝑥𝑥1 ≥ 𝑡𝑡

• Then, 𝜆𝜆max 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ = 𝑡𝑡2 and 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹
≈ 𝑡𝑡4 + ⁄1 𝑛𝑛

• We just need 𝑡𝑡 ≫ 𝑛𝑛− ⁄1 4

How to conditioning on some event if only access to moments 𝔼𝔼 𝑥𝑥𝑆𝑆 ?



Rounding via conditioning polynomial reweighing
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Key idea: polynomial reweighing!

• Define a linear operator 𝔼𝔼𝜇𝜇′  such that for any polynomial 𝑝𝑝 𝑥𝑥 , 

𝔼𝔼𝜇𝜇′ 𝑝𝑝 ≔
𝔼𝔼𝜇𝜇 𝑤𝑤 𝑥𝑥 𝑝𝑝 𝑥𝑥
𝔼𝔼𝜇𝜇 𝑤𝑤 𝑥𝑥

 

• If 𝑤𝑤 is the indicator function for ℰ, then 𝔼𝔼𝜇𝜇′  is just the conditional expectation

• Instead, we’ll choose 𝑤𝑤 to be some low-degree polynomial

Claim.  There is a degree-𝒪𝒪 𝑛𝑛  reweighing of the uniform distribution on 𝕊𝕊𝑛𝑛−1 which has the 
approximate rank-1 property: 𝜆𝜆max 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ ≥ 0.99 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹



Rounding via polynomial reweighing
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Claim.  There is a degree-𝒪𝒪 𝑛𝑛  reweighing of the uniform distribution 𝜇𝜇 on 𝕊𝕊𝑛𝑛−1 which has the 
approximate rank-1 property: 𝜆𝜆max 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ ≥ 0.99 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹

Proof.

• Let 𝑔𝑔 ∼ 𝒩𝒩 0, 𝐼𝐼  be a Gaussian vector and 𝑤𝑤 𝑥𝑥 ≔ 𝑥𝑥,𝑔𝑔 𝑘𝑘

• 𝔼𝔼′ 𝑥𝑥𝑥𝑥⊤ = 𝔼𝔼 𝑥𝑥,𝑔𝑔 𝑘𝑘𝑥𝑥𝑥𝑥⊤

𝔼𝔼 𝑥𝑥,𝑔𝑔 𝑘𝑘

• 𝜆𝜆max = 𝑔𝑔⊤

𝑔𝑔
𝔼𝔼′ 𝑥𝑥𝑥𝑥⊤ 𝑔𝑔

𝑔𝑔
= 𝔼𝔼 𝑥𝑥,𝑔𝑔 𝑘𝑘+2

𝔼𝔼 𝑥𝑥,𝑔𝑔 𝑘𝑘 𝑔𝑔 2

• 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹
2 = 𝜆𝜆max2 + ⁄1 − 𝜆𝜆max 2 𝑛𝑛 − 1

• If 𝜆𝜆max ≥
𝑘𝑘+2
2𝑛𝑛

, then we are done by taking 𝑘𝑘 = 𝒪𝒪 𝑛𝑛 !

𝑔𝑔
𝑔𝑔
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Claim.  There is a degree-𝒪𝒪 𝑛𝑛  reweighing of the uniform distribution 𝜇𝜇 on 𝕊𝕊𝑛𝑛−1 which has the 
approximate rank-1 property: 𝜆𝜆max 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ ≥ 0.99 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹

Proof.

• Let 𝑔𝑔 ∼ 𝒩𝒩 0, 𝐼𝐼  be a Gaussian vector and 𝑤𝑤 𝑥𝑥 ≔ 𝑥𝑥,𝑔𝑔 𝑘𝑘

• Goal: 𝔼𝔼𝑥𝑥 𝑥𝑥,𝑔𝑔 𝑘𝑘+2 ≥ 𝑘𝑘+2
2𝑛𝑛

𝔼𝔼𝑥𝑥 𝑥𝑥,𝑔𝑔 𝑘𝑘 𝑔𝑔 2 𝑔𝑔
𝑔𝑔
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Claim.  There is a degree-𝒪𝒪 𝑛𝑛  reweighing of the uniform distribution 𝜇𝜇 on 𝕊𝕊𝑛𝑛−1 which has the 
approximate rank-1 property: 𝜆𝜆max 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ ≥ 0.99 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹

Proof.

• Let 𝑔𝑔 ∼ 𝒩𝒩 0, 𝐼𝐼  be a Gaussian vector and 𝑤𝑤 𝑥𝑥 ≔ 𝑥𝑥,𝑔𝑔 𝑘𝑘

• Goal: 𝔼𝔼𝑔𝑔 𝔼𝔼𝑥𝑥 𝑥𝑥,𝑔𝑔 𝑘𝑘+2 ≥ 𝑘𝑘+2
2𝑛𝑛

𝔼𝔼𝑔𝑔 𝔼𝔼𝑥𝑥 𝑥𝑥,𝑔𝑔 𝑘𝑘 𝑔𝑔 2

• LHS = 𝔼𝔼𝑧𝑧∼𝒩𝒩 0,1 𝑧𝑧𝑘𝑘+2 = 𝑘𝑘 + 2

• RHS = 𝑘𝑘+2
2𝑛𝑛

𝔼𝔼𝑧𝑧∼𝒩𝒩 0,1 𝑧𝑧𝑘𝑘 𝑧𝑧2 + 𝑛𝑛 − 1 = 𝑘𝑘+2
2𝑛𝑛

𝑘𝑘 + 2 + 𝑛𝑛 − 1 𝑘𝑘  

𝑔𝑔
𝑔𝑔

∎
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Structure theorem.

For any distribution 𝜇𝜇 over 𝕊𝕊𝑛𝑛−1, there exists a degree-𝒪𝒪 𝑛𝑛  reweighing 𝔼𝔼𝜇𝜇′  such that 
𝜆𝜆max 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ ≥ 0.99 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹

Proof.

• Let 𝑘𝑘 = 𝒪𝒪 𝑛𝑛  and 𝑔𝑔 ∼ 𝒩𝒩 0,𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤

• Let 𝔼𝔼𝑎𝑎′  be the reweighing with 𝑥𝑥,𝑔𝑔 𝑎𝑎 for even 0 ≤ 𝑎𝑎 ≤ 𝑘𝑘 − 2

• Then, we have 𝜆𝜆max 𝔼𝔼𝑎𝑎′ 𝑥𝑥𝑥𝑥⊤ = 𝔼𝔼 𝑥𝑥,𝑔𝑔 𝑎𝑎+2

𝔼𝔼 𝑥𝑥,𝑔𝑔 𝑎𝑎 𝑔𝑔 2

• If ∏𝑎𝑎=0
𝑘𝑘−2 𝜆𝜆max 𝔼𝔼𝑎𝑎′ 𝑥𝑥𝑥𝑥⊤ = 𝔼𝔼 𝑥𝑥,𝑔𝑔 𝑘𝑘

𝑔𝑔 𝑘𝑘 ≥ 0.99 ⁄𝑘𝑘 2 𝔼𝔼 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹
⁄𝑘𝑘 2 with positive probability, then we are 

done! (why?)

Easy to make 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹
≈ 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹
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𝔼𝔼𝑔𝑔 𝔼𝔼𝜇𝜇 𝑥𝑥,𝑔𝑔 𝑘𝑘 ≥ 0.99 ⁄𝑘𝑘 2 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹
⁄𝑘𝑘 2𝔼𝔼𝑔𝑔 𝑔𝑔 𝑘𝑘  where 𝑔𝑔 ∼ 𝒩𝒩 0,𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤

• For the LHS, we have

𝔼𝔼𝜇𝜇 𝔼𝔼𝑔𝑔 𝑥𝑥,𝑔𝑔 𝑘𝑘 = 𝑘𝑘 − 1 𝔼𝔼𝜇𝜇 𝑥𝑥⊤𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝑥𝑥
⁄𝑘𝑘 2 ≥ 𝑘𝑘 − 1 𝔼𝔼𝜇𝜇 𝑥𝑥⊤𝔼𝔼𝜇𝜇 𝑥𝑥⊤𝑥𝑥 𝑥𝑥

⁄𝑘𝑘 2

= 𝑘𝑘 − 1 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹
𝑘𝑘

• For the RHS, it is more complicated:

𝔼𝔼𝑔𝑔 𝑔𝑔 𝑘𝑘 ≤ �
𝑝𝑝≤ ⁄𝑘𝑘 2

⁄𝑘𝑘 2
𝑝𝑝

2𝑝𝑝 − 1 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹
𝑝𝑝

≤ 1.01 ⁄𝑘𝑘 2 𝑘𝑘 − 1 𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹
⁄𝑘𝑘 2

if 𝑘𝑘 ≥ 𝐶𝐶
𝔼𝔼𝜇𝜇 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹

= Θ 𝑛𝑛

(Jensen)

∎
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1.

→

2.

→

3. Dive in to find the constraints actually used

→ Obtain a degree-𝑑𝑑 Sum-of-Squares proof

4. Relax to a convex program by including only useful constraints

Is there a rank-1 matrix 
in 𝒲𝒲?

Is the polynomial 
system feasible?

Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥
𝑥𝑥 2 = 1
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Polynomial formulation:     (1) Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥    (2) 𝑥𝑥 2 = 1

Rounding: Given degree-𝑑𝑑 moments of 𝜇𝜇 satisfying (1) and (2) 𝔼𝔼𝜇𝜇 𝑥𝑥𝑆𝑆  𝑆𝑆 ⊂ 𝑛𝑛 , 𝑆𝑆 ≤ 𝑑𝑑 , find an 
approximation solution 𝑥𝑥⋆ ∈ 𝕊𝕊𝑛𝑛−1 such that Π 𝑥𝑥⋆ ⊗ 𝑥𝑥⋆ ≥ 0.99

Structure theorem: For any 𝜇𝜇 over 𝕊𝕊𝑛𝑛−1, there exists a degree- �𝒪𝒪 𝑛𝑛  reweighing 𝔼𝔼𝜇𝜇′  such that 
𝜆𝜆max 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ ≥ 0.99 𝔼𝔼𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤ 𝐹𝐹

Issue: can’t hope to compute low-degree moments of 𝜇𝜇 efficiently! 

Key idea: “simple proof” cannot distinguish between distributions and “pseudo-distributions”

• We’ll show that the rounding algorithm works for a less-constrained version of probability 
distributions, that one can efficiently optimized over
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Polynomial formulation:     (1) Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥    (2) 𝑥𝑥 2 = 1

Let 𝜇𝜇 be a probability distribution over 𝑥𝑥 satisfying (1) and (2)

Consider 𝔼𝔼𝜇𝜇 and any polynomial 𝑞𝑞 𝑥𝑥  of degree �𝒪𝒪 𝑛𝑛 :

• Positivity: 𝔼𝔼𝜇𝜇 𝑞𝑞 ≥ 0 whenever 𝑞𝑞 𝑥𝑥 ≥ 0 ∀ 𝑥𝑥

• Normalization: 𝔼𝔼𝝁𝝁 1 = 1

• Constraints satisfiability: 𝔼𝔼𝜇𝜇 𝑞𝑞 ⋅ Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝔼𝔼𝜇𝜇 𝑞𝑞 ⋅ 𝑥𝑥 ⊗ 𝑥𝑥     and    𝔼𝔼𝜇𝜇 𝑞𝑞 ⋅ 𝑥𝑥 2 = 𝔼𝔼𝜇𝜇[𝑞𝑞]

• Only use degree- �𝒪𝒪 𝑛𝑛  moments of 𝜇𝜇: 

𝔼𝔼𝜇𝜇 𝑥𝑥𝑆𝑆  𝑆𝑆 ⊂ 𝑛𝑛 , 𝑆𝑆 ≤ 𝑑𝑑
Positivity is tricky
• No hope for an efficient algorithm even restrict to low degree polynomials

• Conditioning relies on positivity to ensure polynomial reweighing gives another valid distribution
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Polynomial formulation:     (1) Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥    (2) 𝑥𝑥 2 = 1

Let �𝜇𝜇 be a degree-𝑑𝑑 pseudo-distribution over 𝑥𝑥 satisfying (1) and (2)

Consider �𝔼𝔼 ≔ �𝔼𝔼�𝜇𝜇 (pseudo-expectation):

• Linearity: �𝔼𝔼 is a linear operator, described by pseudo-moments �𝔼𝔼 𝑥𝑥𝑆𝑆

• Normalization: �𝔼𝔼 1 = 1

• Constraints satisfiability: for any degree≤ 𝑑𝑑 − 2  polynomial 𝑞𝑞, 

�𝔼𝔼 𝑞𝑞 ⋅ 𝐼𝐼 − Π 𝑥𝑥 ⊗ 𝑥𝑥 = 0    and    �𝔼𝔼 𝑞𝑞 ⋅ 𝑥𝑥 2 − 1 = 0

• Positive semi-definiteness: for any degree≤ ⁄𝑑𝑑 2 polynomial 𝑞𝑞, �𝔼𝔼 𝑞𝑞2 ≥ 0

Computed using an SDP with 𝑛𝑛𝒪𝒪 𝑑𝑑  variables and constraints
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Computed using an SDP with 𝑛𝑛𝒪𝒪 𝑑𝑑  variables and constraints

Variables: �𝔼𝔼 𝑥𝑥𝑆𝑆   ∀ 𝑆𝑆 ⊂ 𝑛𝑛 ∶ 𝑆𝑆 ≤ 𝑑𝑑

Linear constraints: 

• �𝔼𝔼 𝑞𝑞 ⋅ 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2 − 1 = 0  ∀ 𝑞𝑞 of degree at most 𝑑𝑑 − 2

• �𝔼𝔼 𝑞𝑞 ⋅ Π 𝑥𝑥 ⊗ 𝑥𝑥 − 𝑥𝑥 ⊗ 𝑥𝑥 = 0 ∀ 𝑞𝑞 of degree at most 𝑑𝑑 − 2

• �𝔼𝔼 1 = 1

PSD constraint: ℳ𝑑𝑑 ∈ ℝ𝑛𝑛𝒪𝒪 𝑑𝑑 ×𝑛𝑛𝒪𝒪 𝑑𝑑  defined as ℳ𝑑𝑑 𝑆𝑆,𝑇𝑇 ≔ �𝔼𝔼 𝑥𝑥𝑆𝑆∪𝑇𝑇   ∀ 𝑆𝑆,𝑇𝑇 ⊂ 𝑛𝑛 ∶ 𝑆𝑆 , 𝑇𝑇 ≤ ⁄𝑑𝑑 2

ℳ𝑑𝑑 ≽ 0

Solvable in 𝑛𝑛𝒪𝒪 𝑑𝑑  time using e.g., ellipsoid method

Linearity ⇒ only checking 
𝑞𝑞 𝑥𝑥 = 𝑥𝑥𝑇𝑇 for 𝑇𝑇 ≤ 𝑑𝑑 − 2
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Q: Are degree- �𝒪𝒪 𝑛𝑛  pseudo-distributions enough for our rounding? 

 Is the restricted degree- �𝒪𝒪 𝑛𝑛  SoS positivity constraints enough?

There is a growing toolkit to show such statement

“...if the inequality 𝑓𝑓 ≥ 0 is ‘classical’ and ‘famous’ enough, then 𝑓𝑓 usually turns out to be 

representable as a sum of squares, although such a representation is not always easy to find.”
(Frenkel-Horváth ’14)
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Cauchy-Schwarz inequality: If �𝔼𝔼 is a degree-𝑑𝑑 pseudoexpectation, then
�𝔼𝔼 𝑝𝑝 ⋅ 𝑞𝑞 ≤ �𝔼𝔼 𝑝𝑝2 ⁄1 2�𝔼𝔼 𝑞𝑞2 ⁄1 2

Proof.

• We may assume that �𝔼𝔼 𝑝𝑝2 = �𝔼𝔼 𝑞𝑞2 = 1

• SoS positivity ⟹ �𝔼𝔼 𝑝𝑝 − 𝑞𝑞 2 ≥ 0 ⟹ �𝔼𝔼 𝑝𝑝 ⋅ 𝑞𝑞 ≤ 1

Jensen inequality: If �𝔼𝔼 is a degree-𝑑𝑑 pseudoexpectation and 𝑝𝑝 is of degree ≤ ⁄𝑑𝑑 2, then
�𝔼𝔼 𝑝𝑝2 ≥ �𝔼𝔼 𝑝𝑝 2

Proof.

• Apply SoS Cauchy-Schwarz with 𝑞𝑞 = 1

∎

∎
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1.

→

2.

→

3.

→

4. Relax to a convex program by including only useful constraints

→ Optimize over degree-𝑑𝑑 pseudo-distributions

Is there a rank-1 matrix 
in 𝒲𝒲?

Is the polynomial 
system feasible?

Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥
𝑥𝑥 2 = 1
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1. Run Sum-of-Squares relaxation to obtain a degree- �𝒪𝒪 𝑛𝑛  pseudo-distribution �𝜇𝜇 over 𝕊𝕊𝑛𝑛−1

2. Apply structure theorem to obtain a degree- �𝒪𝒪 𝑛𝑛  reweighing �𝜇𝜇′

3. Return rank-1 matrix on top eigenvector of �𝔼𝔼�𝜇𝜇′ 𝑥𝑥𝑥𝑥⊤

Find a rank-1 matrix in a subspace: 

• Input: Π ∈ ℝ𝑛𝑛2×𝑛𝑛2 the orthogonal projector for the subspace 𝒲𝒲

• Promise: Π 𝑢𝑢 ⊗ 𝑢𝑢 = 𝑢𝑢 ⊗ 𝑢𝑢 for 𝑢𝑢 ∈ 𝕊𝕊𝑛𝑛−1

• Goal: find 𝑥𝑥 ∈ 𝕊𝕊𝑛𝑛−1 such that Π 𝑥𝑥 ⊗ 𝑢𝑢 𝐹𝐹
2 > 0.99

Theorem (Barak-Kothari-Steurer ’17).    For every 𝑠𝑠 < 1, there is a 2 �𝒪𝒪 𝑛𝑛 -time algorithm for 𝐵𝐵𝐵𝐵𝑆𝑆1,𝑠𝑠, 
based on rounding an SoS relaxation
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1. Choose the tightest convex “relaxation”

→ Feasible points = distributions over solutions

2. Show how to round any solution

→ “Bulk” of the proof (polynomial reweighing + structure theorem)

3. Dive in to find the constraints actually used

→ Obtain a degree-𝑑𝑑 Sum-of-Squares proof

4. Relax to a convex program by including only useful constraints

→ Optimize over degree-𝑑𝑑 pseudo-distributions

Is there a rank-1 matrix 
in 𝒲𝒲?

Is the polynomial 
system feasible?

Π 𝑥𝑥 ⊗ 𝑥𝑥 = 𝑥𝑥 ⊗ 𝑥𝑥
𝑥𝑥 2 = 1
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