CS 59300 - Algorithms for Data Science
Classical and Quantum approaches

Lecture 8 (09/30)
Sum-of-Squares () |
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Part of the slidés is based on Pravesh Kothari’s talk


https://ruizhezhang.com/course_fall_2025.html

Sum-of-Squares (So$)

Powerful generic framework for algorithm design/nonconvex optimization

Inefficient algorithms Efficient algorithms

(polynomial system) (relaxation + rounding)

Yields the most powerful approximation algorithms for many statistical/ML problems

Max-cut, tensor decomposition, dictionary learning, matrix/tensor completion, sparse PCA,
Gaussian mixture models, planted clique, robust statistics, quantum separability, ...
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Quantum separability

What is quantum entanglement?
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Quantum separability

What is quantum entanglement?

Hilbert space: Hy 02y Hp
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Quantum separability

Hy Q@ Hp #{|P)a ® [Y)p : |P) € Hy, [P) € Hp}
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Quantum separability

Hy Q@ Hp = {z Cilpida @ [Yidp : |d;) € Hy, [3p;) € Hp,c; EC

l

(Pure) separable state:

¥) = 1$)a & )5
E.g.101) = |0) ® [1)

(Pure) entangled state:

W) # |P)a & [P)g V) € Hy, [Yp) € Hp

E.g. %(|oo> +|11)) (Bell state)
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Quantum separability

Sometimes we don't have a complete knowledge of the quantum system

Mixed state: probabilistic mixtures of pure states, e.g. Pr[p = [0)] = %, Prip = |1)] = %

Represented by the density matrix p € B(H):
px0 and tr[p]=1

e.g.
22 %)= 10001+ 5 1n)¢11
Mixed separable state:
pas = ) 1o ®F = ) qildi)aldil ® st
i i
Mixed entangled state: any p,5 not separable
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Quantum separability

The Werner state (2-qubit):
pw@) =p|Y" NP7 [+ (1 —plly
-y = L _
where |¥7) = ﬁ(|01) |10))

p = 1. pure entangled state
1/3 < p < 1: mixed entangled state
0 < p < 1/3: mixed separable state

p = 0: maximally mixed state (noise)

Quantum separability: given the full description of a density matrix p,5 € Cv*** | decide
whether p,5 Is entangled or separable

October 1, 2025



Quantum separability

Quantum separability: given a density matrix p,p5 € ¢ *n*, decide:
YES: pyp Is separable; or
NO: p,5 is e-far from the set of separable states

..e. the weak membership problem for the set of separable states

7
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Entanglement witness and the best separable state (BSS)

Entanglement witness for an entangled state p is a measurement M such that
1. M accepts p with probability 1;
2. For any separable state p’, M accepts p’ with probability at most 1 — ¢
Quantum measurement
M € CV*"* is Hermitian and 0 < M < I
The probability that M accepts p is tr[Mp]
Best separable state problem (BSS; ;): given an n*-by-n* measurement M, distinguish:
there is a separable state p such that tr[Mp] =1
NO: for any separable state p, tr[Mp] < s
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History and motivations of BSS

Best separable state problem (BSS, ;): given an n*-by-n* measurement M and 0 < s <c¢ <1,
distinguish the following two cases:

YES: there is a separable state p such that tr[Mp] = ¢
NO: for any separable state p, tr[Mp] < s

Brute-force: 29 _time
Blier-Tapp '09, Gurvits '03: BSS, ; is NP-hard for any ¢ — s = 1/poly(n)
Harrow-Montanaro "13: no n°U°8™-time algorithm for BSS; o 5 assuming ETH

Quantum complexity implication: if there is a quasi-polynomial time algorithm for BSSj 99 o5, then
QMA(2) c EXP

Brandao et al. 11, Brandao-Harrow "15: quasi-poly algorithm for special family of measurements

October 1, 2025 10



Main result

Theorem (Barak-Kothari-Steurer "17).

For every s < 1, thereis a 20V _time algorithm for BSS; ;, based on rounding an SoS
relaxation
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Classical version of BSS

Find a rank-1 matrix in a subspace:
Input: the basis of a subspace W c R™" of n X n matrices
Promise: uv' € W foru,v € $*1

Goal: find x,y € S*~1 such that dist(xy ", W) < 0.01

rank-1
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Classical version of BSS

Find a rank-1 matrix in a subspace:
Input: the basis of a subspace W c R™" of n X n matrices
Promise: uu' € W foru € $*1

Goal: find x € $S" ! such that dist(xx T, W) < 0.01 Only “symmetric” version for simplicity

rank-1
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Polynomial optimization formulation

Find a rank-1 matrix in a subspace:
Input: I € R X" the orthogonal projector for the subspace W
Promise: [I(u @ u) = u ® u foru € $"1

Goal: find x € $*1 such that [|[TTI(x ® x)||% > 0.99
Degree-4 polynomial optimization:

max_ PxX)=0(x®&x)IIx R x)

xl,...Xne

s.t. xf+-xZ2=1
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Approximation algorithm = Relaxation + Rounding

Is there a rank-1 matrix Is the polynomial

in W? system feasible?

General paradigm in approximation algorithm design
Choose a convex relaxation
Solve a convex program

Round to a feasible solution
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Blueprint

Is there a rank-1 matrix

in W?

system feasible?

Is the polynomial Nx®x)=x®x
lx]]* =1

1. Choose the "tightest” convex relaxation

> Feasible points = distributions over solutions

2. Show how to round any solution

3. Diveinto find the constraints actually used

4. Relax to a convex program by including only useful constraints
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Solutions as distributions

Polynomial formulation: (NN ®x)=x@ x (2) |Ix]|* =1
Let u be a probability distribution over x satisfying (1) and (2)
Consider E, and any polynomial g(x):
Positivity: E,[q] = 0 whenever g(x) =2 0V x
Normalization: E,[1] = 1

Constraints satisfiability: E,[lI(x @ x)] = E,[x ® x] and E,[|lx||*] =1

October 1, 2025 17



Solutions as distributions

Polynomial formulation: (NN ®x)=x@ x (2) |Ix]|* =1
Let u be a probability distribution over x satisfying (1) and (2)
Consider E, and any polynomial g(x):
Positivity: E,[q] = 0 whenever g(x) =2 0V x
Normalization: E,[1] = 1
Constraints satisfiability: E,[q - [I(x @ x)] = E,[q- (x ® x)] and E,[q - lIx]|*] = E,[q]
u requires exponentially many parameters to describe

Only use degree-d moments of u:

{(E,[x51] S| € [n],1S] < d}
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Rounding low-degree moments

Polynomial formulation: (NN ®x)=x@ x (2) |Ix]|* =1

Rounding: Given degree-d moments of u satisfying (1) and (2) {E, [x5] | IS| < [n], S| < d}, find an
approximation solution x* € $"~1 such that ||[ITI(x* ® x*)|| = 0.99

Say, u is uniform over uq, ...,uy € S* ! such that I(u; @ u;) = u;  y;
Say, the set of rank-1 matrices were convex

By linearity,

1
E,[xx'] = Nz wu; €W Done!
i
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Approximate “convexity”

Polynomial formulation: (NN ®x)=x@ x (2) |Ix]|* =1

Rounding: Given degree-d moments of u satisfying (1) and (2) {E, [x5] | IS| < [n], S| < d}, find an
approximation solution x* € $"~1 such that ||[ITI(x* ® x*)|| = 0.99

Lemma (Approximately rank-1 suffices). Suppose that

AmaX(IEu[xxT]) > O.99||IEu[xxT]||F

Then the top eigenvector y of E, [xx T] satisfies ||TI(y @ y)|| = 0.9
Proof.
1Ayy" — Elxx"]llF = |E[xx"]|lf — 4* < 0.01 - A?
Iy @ Il = INE[x ® x]||/2 — 0.1 = [|[E[TI(x & x)]||/2 — 0.1 = [[E[x & x]||/2 - 0.1 = 0.9
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Blueprint

Is there a rank-1 matrix

in W?

system feasible?

Is the polynomial Nx®x)=x®x
lx]]* =1

1.  Choose the “tightest” convex relaxation
-

2. Show how to round any solution
> "Bulk” of the proof

3. Diveinto find the constraints actually used

4. Relax to a convex program by including only useful constraints
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Rounding via conditioning

Polynomial formulation: (NN ®x)=x@ x (2) |Ix]|* =1
Rounding:

Amax(E[xxT]) = O.99||IEu[xxT]||F

Thought experiment 2:

Say, u is uniform over $*71

xx'] = %I, .e. not rank-1

E,[
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Rounding via conditioning

Polynomial formulation: (NN ®x)=x@ x (2) |Ix]|* =1
Rounding:

AmaX(IEu[xxT]) > O.99||IEu[xxT]||F
Thought experiment 2:

Say, u is uniform over $*71

1—t2 1—t2)

T > ~ di (2
IEH[XX | %] = t] = diag (¢~ n-1""""n-1

Define u’ to be the u conditioned on |x;| =t

Then, Amax(E,/[xxT]) = t? and ||E, [xxT]”F ~Jt*+1/n

We just need t >» n~1/4
How to conditioning on some event if only access to moments E[x°]?
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Rounding via-eenditioning polynomial reweighing

Key idea: polynomial reweighing!

Define a linear operator [, such that for any polynomial p(x),
E,[w(x)p(x)]
E,[w(x)]

If w is the indicator function for £, then E;, is just the conditional expectation

E,[p] =

Instead, we'll choose w to be some low-degree polynomial

Claim. There is a degree-0(y/n) reweighing of the uniform distribution on $*~! which has the
approximate rank-1 property: Apax (E,[xxT]) = 0.99||E,, [xxT]||F
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Rounding via polynomial reweighing

Claim. There is a degree-0(y/n) reweighing of the uniform distribution u on $S*~! which has the
approximate rank-1 property: Amay(Ej, [xxT]) = 0.99||E} [xx ]| .

Proof.

Let g ~ V(0,1) be a Gaussian vector and w(x) = (x, g)¥

' E[(x,g)*xxT]
E [xxT] = [E[(x,g)k]

_ 9" T 9 _ _E[xg)*?]
Amax = 151 B B 1500 = Boeg g

B Lex 1|7 = Aiax + (1 = Ama)®/(n = 1)

If Aax = kz—;z, then we are done by taking k = 0(y/n)!
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Rounding via polynomial reweighing

Claim. There is a degree-0(y/n) reweighing of the uniform distribution u on $S*~ which has the
approximate rank-1 property: Amayx(Ej, [xxT]) = 0.99||E} [xx ]| .

Proof.

Let g ~ N (0,1) be a Gaussian vector and w(x) = (x, g)*

k+2

Goal: Ex[(x, 9)“*?] = ——Ex[(x, g)*]llgll?
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Rounding via polynomial reweighing

Claim. There is a degree-0(y/n) reweighing of the uniform distribution u on $S*~ which has the
approximate rank-1 property: Amayx(Ej, [xxT]) = 0.99||E} [xx ]| .

Proof.
Let g ~ N (0,1) be a Gaussian vector and w(x) = (x, g)*

Goal: Eg |Ex[(x, 9)*?]| = 52 E,[Ex[(x, 9) 1llg11?]

2n
LHS = IEZ~N(O,1) [z2%F2] = (k + 2)!!

2 k+2

RHS = 2 E, (o [2° (22 + (n — )] === ((k + 2)11 + (n — Dkt
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Rounding via polynomial reweighing

Structure theorem.

For any distribution p over S"~%, there exists a degree-0(y/n) reweighing E,, such that
Amax(Ej[xxT]) = O.99||IEM[xxT]||F

Easy to make ||[E;L[xxT]||F ~ ||[Eu[xxT]||F

Proof.
Letk = O(vn) and g ~ V(0,E,[xx"])
Let E, be the reweighing with (x, g)? foreven 0 < a < k — 2

_ IE[(x,g)a"'z]
E[{(x,g)%]llg|l?

Then, we have A, (E.[xxT])

k
If [16=5 Amax(Eq[xxT]) = E[ﬁz’ﬁi I'> 0.99%/2||E[xxT]||%/2 with positive probability, then we are

done! (why?)
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Rounding via polynomial reweighing

k/2

Eg |E,[(x, 9)¥1| 2 0.99%/2|[E,,[xxT]||

Eylllgll*] where g ~ (0, E,[xxT])

For the LHS, we have
(Jensen)

E, [Eg[(x, 9)¥]] = (k = DUE, [(x "B, [xxT1x)"*] = (k = DU E, [xTE, [xTx]x]*"*

K
= (k = DI |E,Lex ]| .
For the RHS, it is more complicated:

k
Eg[llgll*] < z ( ;2> @p — D ||E, [xx ]|}

p<k/2
k/2

< 1.01%/2(k — ! || By [xx T

iflk>-—C¢ 0 = 0(/n)

— ||EulxexT
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Blueprint

Is there a rank-1 matrix

in W?

system feasible?

Is the polynomial Nx @x) =xQx
lx]]* =1

1. Choose the “tightest” convex relaxation
=

2. Show how to round any solution
>

3. Diveinto find the constraints actually used
> Obtain a degree-d Sum-of-Squares proof

4. Relax to a convex program by including only useful constraints
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Algorithm from rounding

Polynomial formulation: (NN ®x)=x@ x (2) |Ix]|* =1

Rounding: Given degree-d moments of u satisfying (1) and (2) {E, [x5] | IS| < [n], S| < d}, find an
approximation solution x* € $"~1 such that ||[ITI(x* ® x*)|| = 0.99

Structure theorem: For any u over S*1, there exists a degree-0(y/n) reweighing [, such that
AmaX(IE;L[xxT]) > 0.99||[EL [xxT]”F

Issue: can't hope to compute low-degree moments of u efficiently!
Key idea: “simple proof” cannot distinguish between distributions and “pseudo-distributions”

We'll show that the rounding algorithm works for a less-constrained version of probability
distributions, that one can efficiently optimized over

October 1, 2025 31



Solutions as distributions

Polynomial formulation: (NN ®x)=x@ x (2) |Ix]|* =1
Let u be a probability distribution over x satisfying (1) and (2)
Consider E, and any polynomial g(x) of degree O(/n):
Q Positivity: E,[q] = 0 whenever g(x) =2 0V x

Normalization: E,[1] = 1

Constraints satisfiability: E,[q - TI(x @ x)] = E,[q- (x ® x)] and E,[q - lIxl|*] = E,[q]
Only use degree-0(y/n) moments of u:
{E,[x°1]IS] < [n],IS] < d}
Positivity is tricky
No hope for an efficient algorithm even restrict to low degree polynomials

Conditioning relies on positivity to ensure polynomial reweighing gives another valid distribution
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Pseudo-distribution

Polynomial formulation: (NN ®x)=x@ x (2) |Ix]|* =1
Let i be a degree-d pseudo-distribution over x satisfying (1) and (2)
Consider E = E; (pseudo-expectation):
Linearity: E is a linear operator, described by pseudo-moments E[x*]
Normalization: E[1] = 1
Constraints satisfiability: for any degree< (d — 2) polynomial g,
Elg-(-Mx®x)] =0 and E[g-(x]>?-1)]=0
Positive semi-definiteness: for any degree< d/2 polynomial g, E[¢g?] = 0

Computed using an SDP with n°@ variables and constraints
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Degree-d SoS algorithm

Computed using an SDP with n%@ variables and constraints

/Variables: E[xS] vScn]:|S|<d

Linear constraints;

3l

g (xf+-+x2—1)] =0 V q of degree at most d — 2 Linearity = only checking
g(x) =xT for|T|<d-2

Bl

g - (II(x ®x) —x ®x)] =0V g of degree at most d — 2

E[1] =1

0(d) 57y 0(d)

PSD constraint: M; € R™ defined as M,[S,T] == E[x5YT] VS, T c [n] : |S|,|IT| < d/2

M, =0

o

Solvable in n9@) time using e.g., ellipsoid method
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Rounding Pseudo-distribution

Q: Are degree-0(y/n) pseudo-distributions enough for our rounding?

Is the restricted degree-0(y/n) SoS positivity constraints enough?
There is a growing toolkit to show such statement

“u
.If the inequality f = 0 is ‘classical’ and famous’ enough, then f usually turns out to be

”
representable as a sum of squares, although such a representation is not always easy to find.

(Frenkel-Horvath '14)
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SoS toolkit

Cauchy-Schwarz inequality: If E is a degree-d pseudoexpectation, then
Elp - q] < E[p?*]"/*E[q*]"/?
Proof.
We may assume that E[p?] = E[¢?] = 1
SoS positivity = E[(p —¢)?] = 0= E[p-q] < 1

Jensen inequality: If E is a degree-d pseudoexpectation and p is of degree < d/2, then
E[p®] = E[p]?

Proof.

Apply SoS Cauchy-Schwarz with g = 1
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Blueprint

Is there a rank-1 matrix

in W?

system feasible?

lx]1* =1

Is the polynomial { Mx®x)=xQx

1. Choose the tightest convex “relaxation”
-
2. Show how to round any solution
-
3. Divein to find the constraints actually used
>
4. Relax to a convex program by including only useful constraints
>  Optimize over degree-d pseudo-distributions
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Full algorithm

1. Run Sum-of-Squares relaxation to obtain a degree-0 (y/n) pseudo-distribution i over $*~1
2. Apply structure theorem to obtain a degree-0(y/n) reweighing f’

3. Return rank-1 matrix on top eigenvector of E;s[xxT]

Find a rank-1 matrix in a subspace:
Input: 1 € R* > the orthogonal projector for the subspace W
Promise: [I(u @ u) = u ® uforu € $"1
Goal: find x € $*~ 1 such that ||II(x ® u)||Z2 > 0.99

Theorem (Barak-Kothari-Steurer 17). For every s < 1, thereis a 20V time algorithm for BSS, g,
based on rounding an SoS relaxation
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Blueprint

Is there a rank-1 matrix

in W?

system feasible?

lx]1* =1

s the polynomial { Mx®x)=x&x

1. Choose the tightest convex “relaxation”
> Feasible points = distributions over solutions
2. Show how to round any solution
> "Bulk” of the proof (polynomial reweighing + structure theorem)
3. Diveinto find the constraints actually used
> Obtain a degree-d Sum-of-Squares proof
4. Relax to a convex program by including only useful constraints
>  Optimize over degree-d pseudo-distributions
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